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Abstract

We derive from first principles a mathematical physics model useful for understanding nonlinear
optical propagation (including filamentation). All assumptions necessary for the development are clearly
explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear
shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption
required to arrive at a complete and consistent theoretical description. The development includes the
relationship between shock and ionization and demonstrates why inclusion of Drude model impedance
effects alters the nature of the shock operator.
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1 Introduction

Mathematical modeling of intense optical pulse propagation physics via nonlinear Schrödinger equations finds
application in a very large number of fields. Optical parametric amplifiers and oscillators [23, 11], second
harmonic generation [19] and third harmonic generation [36], Raman scattering [37], optical bistability
[21], and solitons [24, 25, 33], are but a few of the physical phenomena with broad practical application.
The scientific and engineering communities have significant efforts in the numerical modeling [29, 12, 1, 2,
13] of these phenomena for both commercial and scientific research purposes. In this report we derive a
general nonlinear Schrödinger equation from first principles paying particular attention to the physical and
mathematical assumptions necessary to arrive at each step. A variety of models and unit systems are used in
the literature to describe various subsets of known physical effects (see Brabec [9], Couairon [13], or Zozulya
[40]). Here we bring the physical phenomena of interest under the same framework using a single common
notation and unit system.

The development proceeds as follows. We derive the physics model beginning with Maxwell’s equations
in section 2. The nonlinear and linear portions of a basic propagation model are introduced in section 2.1.
We also discuss removal of the optical fast phase component resulting in an envelope propagation model
and introduce a retarded coordinate system traveling at the pulse group velocity in order to simplify the
description. Section 2.2 explicitly details specific nonlinear material models for the physics of interest. The
instantaneous or Kerr material response is described in section 2.2.1. Section 2.2.2 describes delayed Kerr
or Raman scattering and shows how and why it is generally combined with the instantaneous Kerr response
in mathematical models. Ionization is discussed in section 2.2.3. The description of ionization covers multi-
photon and tunneling regimes as well as recombination and saturation effects. It also includes both a simple
and a Drude (ion-molecule collision) ionization current model. The latter leading to the concept of ionization
current impedance. Of particular note is the development of the shock operator when including Drude model
(collision) effects in the description of ionization in section 2.2.3. Inclusion of these effects, in the manner
shown in our paper, leads to a difference in the form of the operator from some reports in the literature (see
[13] for example). The entire mathematical model is summarized concisely in section 3. Appendix A gives
an exhaustive description of all symbols used in the text.
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2 Mathematical Physics Development

In this section we lay out the basis of the mathematical physics model. Beginning with the fundamental
governing equations for electromagnetics, we develop a parabolic wave equation together with a set of
nonlinear operators. The model accounts for diffraction, linear material dispersion, self-focusing (Kerr effect),
ionization (energy loss and defocusing), and Raman interaction. We retain terms accounting for space-time
focusing (see Zozulya [39]) and shock (see Brabec [8]). For clarity in the developments that follow we use
bold-face to indicate vector variables, plain type for scalar quantities, and eventually a calligraphic font for
variables describing envelope quantities (see Eqs. (29) and (30)). In general these variables are functions of
time and space. The temporal Fourier transform of a quantity is a function of frequency and space and is
indicated via a small caret or hat over the variable (see Eqs. (17a) and (17b)).

Classical free-space electromagnetic phenomena are governed by Maxwell’s equations

∇×E = −∂tB Faraday’s Law (1)
∇×H = J + ∂tD Ampere’s Law (2)
∇ ·D = ρ Electric Gauss’ Law (3)
∇ ·B = 0 Magnetic Gauss’ Law (4)

where

E = Electric field strength (volts/meter)
H = Magnetic field strength (amperes/meter)
D = Electric flux density (coulombs/square meter)
B = Magnetic flux density (webers/square meter)
J = Current density (amperes/square meter)
ρ = Electric charge density (coulombs/cubic meter)

are functions of time and space. In order to obtain a solution for a particular problem we need additional
equations relating the field quantities. These constitutive expressions specify the relationships between field
quantities that are functions of the specific material interacting with the fields. In free space we have

D = εoE (5)
B = µoH, (6)

where the free-space permittivity and permeability are

εo = 8.854× 10−12 F/m (7)

µo = 4π × 10−7 H/m. (8)

2.1 Propagation Model

If the field interacts with a physical material, we must introduce descriptive models of the relationships
between electric field and electric flux density and between magnetic field and magnetic flux density. For
a dielectric material we may modify Eq. (5) by modeling the polarization response of the material. The
field quantity D is often given in units of Coulombs per square meter. However, it may be more intuitively
considered in units of charge separation per unit volume or Coulomb meters per cubic meter. We may add
a term (also with units of charge separation per unit volume) representing the total polarization response of
the material

D = εoE + P = εoE + Pl + Pnl (9)

where we have written the total polarization P as a sum of linear and nonlinear responses Pl and Pnl

respectively. We model the linear portion of the response as directly proportional to the electric field
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amplitude. The linear susceptibility for a particular material tells us how much charge separation per unit
volume is generated through material polarization for a given electric field strength. The linear portion of
the model is generally given in the frequency domain as

Dl(ω) = εoE(ω) + εoχ
(1)(ω)E(ω) = εoεr(ω)E(ω) (10)

where the linear susceptibility χ(1)(ω) and relative permittivity εr(ω) are functions of frequency, representing
linear dispersion. In the time domain, this relationship is expressed via convolution as

D(t) =
∫ t

−∞
ε(t− t′)E(t′)dt′ + Pnl, (11)

where total linear permittivity is given as ε(t) = εoεr(t).

Eqs. (1) and (2) yield the most general form of the wave equation for nonlinear optics

∇×∇×E +
1
εoc2

∂2
tD(t) +

1
εoc2

∂tJ = 0 (12)

where µ0 = 1/εoc2. For our purposes, the electric flux density is then sufficiently described as in Eq. (11).

For any vector A [16]
∇×∇×A = ∇(∇ ·A)−∇2A, (13)

which may be used in Eq. (12) to arrive at

−∇2E +
1
εoc2

∂2
tD(t) +

1
εoc2

∂tJ = 0, (14)

provided ∇(∇ · E) ≈ 0. For linear, isotropic source-free media, Eq. (3) would allow us to conclude that the
divergence of the electric field is identically zero. However, for nonlinear optics this is never really the case
due to the more general relationship between the electric field and the electric flux density given in Eq. (11)
[7]. The assumption is, however, valid in circumstances where the fields are primarily transverse (it breaks
down for high numerical apertures). In the remainder of this paper we take Eq. (14), often referred to as
the paraxial approximation, as sufficient for our purposes. Using Eqs. (11) through (14) we may write

∇2E− 1
c2
∂2
t

∫ t

−∞
εr(t− t′)E(t′)dt′ =

1
εoc2

(∂2
tPnl + ∂tJ) (15)

which forms the basis for development of many practical nonlinear propagation models.

If ionization is not included (current J is zero in Eq. (15)), we have Brabec’s [9] initial equation. If the
response of the material and the electric field are transverse and the polarization may be considered linear,
we have the scalar equation

∇2E − 1
c2
∂2
t

∫ t

−∞
εr(t− t′)E(t′)dt′ =

1
εoc2

∂2
tNpE. (16)

For convenience in Eq. (16) we have combined the polarization and current terms. The difference in the
order of the derivatives operating on each means that we express the combined nonlinear term Np as the sum
of nonlinear polarization and the integral of current density. Although we do not explicitly state it here, the
nonlinear operator is understood to be a function of the electric field. In order to create a tractable model
we make a few more assumptions that allow a physical description of how the pulse envelope (rather than
the instantaneous electric field amplitude) propagates.

In the subsequent development we make use of the Fourier transform. The many different representations
of the transform differ by scale factors and conjugation. In order to provide clarity in what follows we define
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the transform explicitly as

f(t) =
1

2π

∫ ∞
−∞

dω f̂(ω)e−iωt (Synthesis) (17a)

f̂(ω) =
∫ ∞
−∞

dt f(t)eiωt (Analysis) (17b)

It is important to understand the nature of the approximations made before developing the numerical
model. It is useful in the following to write the Laplacian as the sum of longitudinal and transverse com-
ponents. We also make use of the Fourier transforms defined in Eqs. (17a) and (17b) to move the temporal
operators to the frequency domain, giving

(∂2
z +∇2

⊥)Ê + k2(ω)Ê = − ω2

εoc2
N̂p, (18)

where

k(ω) ≡
ω
√
ε(ω)
c

, (19)

and
N̂p = F{NpE}. (20)

Our interest in this paper is the propagation of optical pulses. As such we introduce the concept of an
electromagnetic pulse per Born and Wolf[6].

E(r, t) = <
{∫ ∞
−∞

aω(r)e−i[ωt−gω(r)] dω

}
(21)

where <{} is the real part of operator, describes an optical pulse or wave group if the phase function gω(r)
can be meaningfully approximated by a linear function of frequency ω over the range where amplitude aω(r)
differs appreciably from zero. When this is the case, the concept of a pulse can be used to model the
propagation of an electromagnetic disturbance which retains some sense of limited support (the region over
which it is non-zero) in space and time as it moves. This may be seen via the Fourier Shift Theorem (see
Bracewell [10]) which states that translation of a function in the spatial or temporal domain corresponds to
a linear phase shift in its Fourier transformed distribution [10]. Eq. (21) describes the instantaneous electric
field as a function of space and time. In what follows, we use the typical convention of discussing the complex
field (without taking the real part of the right hand side in Eq. (21)). Ultimately we develop propagation
equations in terms of a complex pulse envelope in order to make the numerical modeling problem feasible.

As we observe the optical disturbance propagate in a dispersive material the pulse description given in
Eq. (21) gives rise to two concepts of velocity. Phase velocity describes the motion of the surfaces of constant
phase in the wave group, while group velocity describes the rate at which surfaces of constant amplitude
travel. We may also view the group velocity as a description of how fast the wave envelope travels. In a
non-dispersive medium the group and phase velocities are the same. Phase velocity and group velocity are
given respectively as

vp =
ω

k
and vg =

dω

dk
=
(
dk

dω

)−1

≡ 1
k′
, (22)

where the final definition may be understood with the help of Eq. (41). We later transform our propagation
physics into a coordinate system that moves at the group velocity so that our numerical grid moves along
with the pulse (eliminating the need for a grid covering all of the space between source and destination).

Having established that the pulse must have effectively finite support in the temporal frequency domain
we may define a center frequency. The principal purpose of the center frequency definition is to allow us
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to later “factor out” or “eliminate” a fast phase component of our description thus facilitating a discrete
numerical model with lower sampling requirements. We take Brabec’s[9] definition given as

ωo ≡
∫∞
o
dω ω|Ê(ω)|2∫∞

o
dω |Ê(ω)|2

, (23)

Naturally, during nonlinear propagation the center frequency per Eq. (23) will change as the pulse spec-
trum is altered. Hence, ωo really represents the center frequency of the pulse before the onset of nonlinear
propagation.

We now transform to a coordinate system traveling at the group velocity of the pulse (t, z) → (τ, ζ),
where

τ = t− k′z, ζ = z. (24)

From the chain rule we obtain
∂t = ∂τ , ∂z = ∂ζ − k′∂τ (25)

The temporal frequency domain representations of the operators in Eq. (25) are

∂t = −iω, ∂z = ∂ζ + ik′ω. (26)

We now express Eq. (18) in the pulse reference frame via operator substitution as

[(∂ζ + ik′ω)2 +∇2
⊥]Ê + k2(ω)Ê = − ω2

εoc2
N̂p, (27)

where Ê ≡ Ê(r, τ, ζ). Eq. (27) is a carrier-resolved description in the pulse reference frame expressed in the
temporal frequency domain. We refer to the center frequency described in Eq. (23) as the carrier. In order
to facilitate subsequent development we expand one of the operators in Eq. (27) to obtain

∂2
ζ Ê + 2ik′ω∂ζÊ = −∇2

⊥Ê − [k2(ω)− (k′ω)2]Ê − ω2

εoc2
N̂p. (28)

Ultimately our model will be written in terms of envelope variables in order to create a computationally
viable framework. We now introduce the envelope models. For the laboratory fixed frame we write

E(r, t, z) = <{E(r, t, z) exp(−iωot+ ikz)}. (29)

From Eq. (29) via Eqs. (24) we have

E(r, τ, ζ) = <{E(r, τ, ζ) exp(−iωoτ + i(k − k′ωo)ζ)}, (30)

for the moving pulse frame. In Eqs. (29) and (30) the quantity E represents the instantaneous scalar electric
field amplitude while E is the envelope of the electric field.

Envelope models are useful when two distinct temporal scales exist in a propagation problem. They
allow us to separate a fast scale (oscillation of the instantaneous electric field amplitude) from a slow scale
(overall shape of the optical pulse). The envelope is complex, allowing phase variation (deviation from the
fast phase) over the duration of the pulse to be described. The complete electric field can be reconstructed
from this envelope easily as the real part of the product of the envelope and the fast phase component. In
order to arrive at a propagation relationship expressed in terms of only envelope variables we will need to
substitute each envelope term into Eq. (28) accounting for the effect of the first and second order derivatives
with respect to ζ on the envelope expression. Using Eq. (30) we obtain the following general relationship for
the nth derivative of the envelope with respect to ζ,

∂nζ E = exp(−iωoτ + i(k − k′ωo)ζ)[∂ζ + i(k − k′ωo)]nE , (31)

with Fourier transform in the temporal variable τ

∂nζ Ê = exp(i(k − k′ωo)ζ)[∂ζ + i(k − k′ωo)]nÊ , (32)
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where Ê is a function of ω − ωo (see Bracewell [10]). Assuming a similar envelope model for the nonlinear
polarization term (see [12], page 30), we may use Eq. (32) and Eq. (28) to obtain (after canceling the
ubiquitous complex exponential term)

∂2
ζ Ê + 2iκ(ω)∂ζ Ê = −∇2

⊥Ê − (k2(ω)− κ2(ω))Ê − ω2

c2εo
N̂p (33)

where κ(ω) = k + k′(ω − ωo), and
N̂p = F{NpE} (34)

Note that κ(ω) is really the sum of the first two terms in the Taylor series expansion of k(ω). In writing
Eq. (33) using variable envelopes we have presumed that it is possible to write the nonlinear operators in
envelope form. In section 2.2 we show that this is possible.

We make an essential approximation that produces an initial value problem from the second order partial
differential Eq. (33) by requiring

|∂2
ζ Ê | � 2κ(ω)|∂ζ Ê |. (35)

Eq. (35) indicates that the magnitude of the change in ∂ζ Ê is small when compared with the actual magnitude
of ∂ζ Ê scaled by κ(ω) (which is approximately inversely proportional to the spatial wavelength). In other
words, the magnitude and phase of the pulse envelope evolve slowly with respect to the motion of the pulse
in the ζ-direction. In order to maintain slow evolution of the pulse as we move in the principle direction
of propagation, we cannot allow angular spectrum components with large angles. This implies a paraxial
model (similar to the assumption used to obtain Eq. (14)).

Using the approximation in Eq. (35) to simplify Eq. (33) yields

∂ζ Ê =
i

2κ(ω)
∇2
⊥Ê + i

k2(ω)− κ2(ω)
2κ(ω)

Ê + i
ω2

2κ(ω)c2εo
N̂p. (36)

Eq. (36) is one-way, meaning that it presumes reflected waves are insignificant (see Feit and Fleck [17]).
Also, we have placed restrictions only on the evolution of the pulse in the ζ-direction, meaning that steep
changes in the envelope along the temporal axis are allowed.

The frequency content of the pulse envelope is naturally much lower than that of the pulse itself (meaning
∆ω � ωo). Specifically, factoring out the carrier has left a pulse envelope description centered about the
carrier frequency (the carrier frequency is at the origin of a spectral plot of the envelope). The envelope
frequencies are really differences from the carrier and the frequency axis relationship between the envelope
and the pulse is Ω = ω − ωo.

The first term on the right-hand side of Eq. (36) operates on transverse coordinates only and represents
diffraction. The last term represents the nonlinear material response. The center term is our dispersion
model. It represents the linear material response. We know that κ(ω) is the sum of the first two terms in the
Taylor series expansion of k(ω). The difference between κ(ω) and k(ω) is comprised of higher order (second
and above) Taylor series terms. Thus we know that the expression

k2(ω)− κ2(ω)
2κ(ω)

, (37)

describes the dispersion of the envelope under our model. The ratio of angular frequency to wavenumber
gives the corresponding phase velocity. We know that in our moving coordinate system the phase velocities of
each frequency must be adjusted by the velocity of the numerical grid (which is by design the group velocity
of the pulse). Frequencies traveling at the group velocity should have phase velocities of zero. Those traveling
faster should have positive phase velocities. Those traveling slower must have negative phase velocities so
that they can move backward on our computational grid. With a little algebra we may approximate the
dispersion relationship in Eq. (37) as

k2(ω)− κ2(ω)
2κ(ω)

= [k(ω)− κ(ω)]
(

1 +
k(ω)− κ(ω)

2κ(ω)

)
≈ k(ω)− κ(ω), (38)
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where the neglected terms are necessarily fourth order in Ω. Using Eq. (38) in Eq. (36) gives

∂ζ Ê =
i

2κ(ω)
∇2
⊥Ê + i(k(ω)− κ(ω))Ê + i

ω2

2κ(ω)c2εo
N̂p. (39)

The dispersion relationship in Eqs. (38) and (39) may also be expressed as a Taylor series expansion

D(Ω) ≡ k(ω)− κ(ω) =
∞∑
m=2

k(m)

m!
Ωm, (40)

where the wavenumber

k(m) =
∂mk(ω)
∂ωm

∣∣∣∣
ω=ωo

. (41)

The sum in Eq. (40) begins at m = 2 because κ(ω) subtracts off the first two terms of the series. Often
the first three dispersion coefficients defined by Eq. (41) are written as k′, k′′, and k′′′ respectively and we
adhere to that convention in our development.

We now transform Eq. (39) back into the time domain. We can express everything in terms of the slow
frequency variable Ω = ω − ωo. Remember that

∂τ → −iΩ or i∂τ → Ω (42)

so that

ω = ωo + Ω→ ωo

(
1 +

i

ωo
∂τ

)
. (43)

Also,

κ(ω) = k + k′Ω→ k

(
1 + i

k′

k
∂τ

)
≈ k

(
1 +

i

ωo
∂τ

)
, (44)

where the final approximation assumes the group velocity is nearly equal to the phase velocity. If we identify
the shock operators

T ≡
(

1 +
i

ωo
∂τ

)
and S ≡

(
1 + i

k′

k
∂τ

)
, (45)

we then have

∂ζE =
i

2k
S−1∇2

⊥E + iD(i∂τ )E +
iωo

2nocεo
S−1T 2NpE , (46)

where we have used ck = noωo. Using Eq. (44) we simplify the propagation description to

∂ζE ≈
i

2k
T−1∇2

⊥E + iD(i∂τ )E +
iωo

2nocεo
TNpE . (47)

In order to obtain nonlinear terms with forms familiar from the literature it is convenient to define

N ≡ iko
2noεo

Np (48)

and write

∂ζE ≈
i

2k
T−1∇2

⊥E + iD(i∂τ )E + TNE (49)

Often only the first two terms (m = 2, 3) in the summation D(i∂τ ) are retained. These are called group
velocity dispersion and third order dispersion respectively.
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2.2 Nonlinear Material Model

In this section we outline the physics behind the nonlinear portion of the mathematical model. Section 2.2.1
discusses the nearly instantaneous refractive index perturbation introduced into the medium by the presence
of the strong electric field associated with a high intensity optical disturbance (referred to as the Kerr effect).
We derive an expression for the nonlinear refractive index (the constant of proportionality relating the cube
of the field value to the nonlinear polarization of the medium). This nonlinear polarization directly affects
the propagation of the optical pulse via wave front delay caused by the increase in refractive index or decrease
in wavespeed in high-intensity regions of the pulse and is primarily responsible for self-focusing. Section 2.2.2
describes stimulated Raman scattering. This effect is also third order in field value. It is a delayed rather
than an instantaneous effect and is represented by a convolution operator.

2.2.1 Instantaneous Kerr Effect

The Kerr effect represents nonlinear electronic polarization that takes place nearly instantaneously. Cen-
trosymmetry (crystallographic or molecular) refers to a distribution containing an inversion center as one of
its symmetry elements. For every point (x, y, z) in the distribution (unit cell for solids and molecule for liq-
uids and gasses) there is an indistinguishable location (−x,−y,−z). The absence of this type of symmetry is
required in order to display properties such as the piezoelectric effect, the Pockels effect, optical rectification,
etc. Centrosymmetric materials have an electronic polarization response that can be described via a Taylor
series expansion in odd powers.

P = εoχ
(1)E + εoχ

(3)(E ·E)E + · · · (50)

The first order term gives rise to the concept of refractive index. Its frequency dependence introduces the
concept of dispersion and results in the convolution integral in Eq. (11) and the Taylor expansion of time-
derivatives in Eqs. (46) and (49). For the nonlinear polarization operator expression in a centrosymmetric
material we have

NpE = εoχ
(3)(E ·E)E. (51)

Using the envelope model (either lab or pulse frame written as the average of complex conjugates) we may
write

E(r, t, z) =
1
2

(E(r, t, z) exp(−iωot+ ikz) + c.c.), (52)

where c.c. refers to the complex conjugate of the first term. Eqs. (52) and (51) give

E3(r, t, z) =
1
8

(E3(r, t, z) exp(−i3ωot+ i3kz)

+ 3|E|2E exp(−iωot+ ikz) + c.c.). (53)

Each term of an envelope model is written as the product of a slowly varying term and a fast phase term
(complex exponential) with common frequency ωo (see Eqs (29) and (30)). Eq. (53) has a complex exponential
term with frequency 3ωo (corresponding to the physical phenomenon of third harmonic generation). In order
to obtain a complete envelope model devoid of any fast phase components we must neglect the third harmonic
term. We now have

E3(r, t, z) =
3
8
|E|2E exp(−iωot+ ikz) + c.c. (54)

This allows us to write the polarization as a simple envelope function, giving

P (r, t, z) =
1
2

(P(r, t, z) exp(−iωot+ ikz) + c.c.), (55)

from which we infer

P(r, t, z) =
3
4
εoχ

(3)|E|2E . (56)
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The above development uses electric field units of (V/m) rather than the
√

W/m. The definition of the
nonlinear refractive index in terms of basic material parameters varies widely in the literature 1. A natural
definition from the expression in Eq. (56) might be simply 3χ(3)/4. However, it is common in the literature
to write the total refractive index as the sum of the linear index and the product of the nonlinear index and
intensity (see for example Diels [15]). We therefore explicitly define

n2 ≡
3χ(3)

4εocn2
o

, (57)

with units of m2/W. In doing so we use the Poynting vector relationship between electric field and intensity
[26]. In SI units for instantaneous fields and plane waves the intensity is equal to the square of electric field
times the reciprocal of the free-space impedance. If the fields are time-harmonic we may average over a single
cycle of the variation and now the intensity is one-half the magnitude of electric field times the reciprocal
of the free-space impedance. For envelope models the time-harmonic relationship cannot hold perfectly (the
envelope is a function of time and must remain under the integral during our average over a carrier cycle).
However, the approximation

I ≈ cnoεo
2
|E|2 (58)

is good down to very short pulses. We can now write

P(r, t, z) = 2εonon2IE (59)

Using the scaling in Eq. (48) the operator expression becomes

NkE ≡ ikon2IE . (60)

It should be evident at this point in our development that we have assumed a centrosymmetric material and
neglected third-harmonic generation.

2.2.2 Raman Scattering

Stimulated molecular Raman scattering is inelastic. It results from interaction with rotational and vibra-
tional modes of the molecule and (like the Kerr effect) is quadratic in the field value. Even though the
physical origins are different, we often combine the Kerr effect and stimulated Raman scattering because
their dependence on field strength is identical. The contribution of stimulated Raman scattering to the
polarization of the material may be modeled as a driven, damped oscillator via a differential equation in
polarizability (see Couairon [13])

∂2
tQR + 2γ∂tQR + (ω2

R + γ2)QR = (ω2
R + γ2)I, (61)

where QR is a kind of generalized material polarization response with units of intensity, ωR is the Raman
frequency, and γ is an empirically determined damping rate. The driving force is quadratic in the external
field. With boundary conditions that require the polarization to go to zero at positive and negative infinity,
we have a solution of

QR(r, t, z) =
∫ t

−∞
R(τ)I(r, t− τ, z)dτ, (62)

with

R(t) =
γ2 + ω2

R

ωR
exp(−γt) sin(ωRt). (63)

We may now sum the total Kerr and Raman scattering responses to obtain

Pkr = 2εonon2[(1− α)I + αQR]E , (64)

1See for example Agrawal [3], page 33, Eq. 2.3.13 or Couairon [1], page 194 in the paragraph just after Eq. 2. Also see
Sutherland [35], page 345, Table 4.
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where Pkr, E , I, and QR are understood to be functions of (r, t, z) and the fractional portion of the combined
effect due to Raman scattering is given as α. Using the scaling in Eq. (48) we write the operator expression
as

NkrE ≡ ikon2[(1− α)I + αQR]E . (65)

2.2.3 Ionization

When field values are high enough the effects of ionization must appear in our model in several places. We
need an evolution equation that describes how changing field values, recombination, multiphoton ionization
(MPI), etc., drive the free-electron density ρ. As the high field values in the pulse ionize the medium it loses
energy. We need to express absorption in the propagator representing the removal of energy from the pulse
due to ionization. The refractive index generally decreases with increasing free-electron density. Refractive
index variation with change in the free-electron density must be accounted for in the principal propagation
equation. Linear and nonlinear shock terms are included in this development. A comparison of Eqs. (76) and
(89) demonstrates that the inclusion of ionization impedance effects alters the shock operator in expressions
for plasma defocusing. This renders the final simulation equation different not only from some treatments
without shock (see [29, 31, 32]) but also from some which do include both shock and ionzation [14, 13, 27].

Free-electron Density We first describe the evolution of the free-electron number density ρ via

dρ

dt
=

σ

n2
oUi

ρI + IKσk (ρnt − ρ)− αrρ2, (66)

where

I = Electric field intensity
no = Background refractive index
K = Photons required to free single electron
Ui = Energy required to free single electron
ρnt = Neutral atom number density
αr = Electron-positive ion recombination loss
σk = Ionization cross-section.

The first term in Eq. (66) is the avalanche or cascade ionization. The second is multiphoton ionization (MPI)
tempered with a saturation term. We have assumed that the ionization cross-section is constant and takes
on a value characteristic of MPI. Physically, it actually exhibits a dependence on field intensity [34]. At
high field strengths its value must be chosen to represent the more prevalent tunneling ionization. The final
term represents the production of neutral atoms through electron-ion recombination. It is possible under the
Drude model to obtain an approximate expression for σ, the avalanche ionization rate coefficient, in terms
of the electron relaxation time and the center frequency of the pulse. However, this relationship does not
always hold so we choose to allow these as separate parameters.

In cases where the neutral atom density is not known precisely and it is possible to neglect saturation
effects, we may use

dρ

dt
=

σ

n2
oUi

ρI +
βK
K~ωo

IK − αrρ2, ρ� ρnt (67)

per Berge [28]. The parameter βK is typically specified directly, but is related to σk and the unknown neutral
atom number density via

βK = σkρntK~ωo. (68)

Plasma Defocusing As part of developing the nonlinear material model we need an expression for the time
derivative of electric current (see Eqs. (15) and (16)). This term ultimately becomes what is known as the
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plasma defocusing term. Current J is the flow of charge through a surface per unit time. The total charge
per unit volume is the product of electron number density (electrons per unit volume) and the charge per
electron. The quantity of charge flowing through a unit area is the product of total charge density and the
rate of flow or velocity giving

J = −eρv, (69)

where e is the charge on an electron, ρ is the total free-electron number density and v is the velocity of the
flow. Differentiating both sides of Eq. (69) gives

∂J
∂t

= −eρ∂v
∂t
. (70)

The value of the electric field is defined as [22]

E =
F
q
, (71)

where F is the force in Newtons and q is a quantity of charge in Coulombs. Using Eqs. (70) and (71)
Newton’s second law gives

dv
dt

=
F
m

= − e

me
E. (72)

Using Eq. (72) in Eq. (70) gives
∂J
∂t

=
e2

me
ρE (73)

We must express the effect of the ionization current in Eq. (73) as an equivalent polarization for use in
our nonlinear model. We may obtain the necessary expression for the integral of the current density (see
Eq. (16)) most easily in the frequency domain. Using the frequency domain envelope representation we
compute the Fourier transform of the integral of the current density as

P̂pls =
1

(−iω)2
F
{
e2

me
ρE
}
, (74)

where division by −iω represents the effect of integration. Moving back into the slow-time (or temporal
envelope) domain we have the following expression for the plasma current equivalent polarization

Ppls = − 1
(ωoT )2

e2

me
ρE . (75)

Expressing Eq. (75) in a form convenient for use in our nonlinear propagation equation we have

T−1NplsE = − iko
2noρc

T−2(ρE), (76)

where we have used the definition of the critical plasma density

ρc ≡ εomeω
2
o/e

2, (77)

above which the plasma becomes opaque to waves with frequencies below ωo. Note the double shock operator
present in Eq. (76).

The relationship in Eq. (76) assumes electrons move in the presence of an applied electric field but does
not take into account collisions between the electrons and the positive ions in our plasma. Drude proposed a
model for electrons in metals that assumes a sea of other particles that function as hard, essentially stationary
scattering centers. This model is certainly applicable for ionization in gases. The larger, positive ions do not
respond very much at all to an oscillating electric field. For this reason the Drude model is sometimes used
to describe this portion of the current. In particular it is needed in order to move from our instantaneous
description in Eq. (73) to our envelope model.
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We now develop an impedance relationship for the plasma that relates current and electric field. The
result will be loss and delay terms that affect the propagation of the pulse. These naturally depend on the
strength of the electric field through the generation of the plasma electron density. We develop an equation
for the evolution of average electron momentum p(t). During a short time interval dt the probability that
a given electron will experience a collision is approximately dt/τc where τc is known as the relaxation time
(considered to be independent of the position or current velocity of the electron). This means that the
change in momentum may be written

p(t+ dt)− p(t) = −dt
τc

p (78)

Eq. (78) is a simple relaxation equation. In the absence of any perturbing forces (such as electric fields), we
may write the evolution of momentum as the product of an initial value and a simple decaying exponential
with time constant τc (hence the name relaxation time). If we have an electric field present then we simply
add a term representing the change in momentum Fdt to arrive at

p(t+ dt)− p(t) = −dt
τc

p(t) +
(

1− dt

τc

)
Fdt

≈ −dt
τc

p(t) + Fdt, (79)

where we have neglected the second order term in dt. Finally we may divide both sides of Eq. (79) by dt,
use the fact that F = −eE and take a limit as the time interval approaches zero to yield

dp(t)
dt

= −p(t)
τc
− eE. (80)

Next we assume a time-harmonic solution to Eq. (80). Our pulses are not time-harmonic, they are envelope
based and so the relationship we obtain between the electric field and momentum (and subsequently current)
will be an approximate one.

E(t) =
1
2

[E(ω) exp(−iωt) + E∗(ω) exp(iωt)] (81)

p(t) =
1
2

[p(ω) exp(−iωt) + p∗(ω) exp(iωt)] (82)

Substituting Eqs. (81) and (82) into Eq. (80) and solving for momentum we obtain

p(ω) =
−eτc

1− iωτc
E(ω) (83)

The linearity of Eq. (80) gives a separate equation for the conjugate of momentum which we don’t really
need. Eq. (69) tells us that we can relate momentum to current and write

J(ω) =
(
− eρ
me

)
p(ω) =

(
− eρ
me

)
−eτc

1− iωτc
E(ω)

≈
(
e2ρτc
me

)
1 + iωτc
1 + ω2τ2

c

E(ω) (84)

Eq. (84) represents a full spectral response by the current to the electric field. The real part accounts for
plasma absorption and the imaginary part for plasma defocusing. These effects vary with frequency and in
order to model the dispersive nature of the plasma impedance we would need to solve Eq. (84) at each step
and update each frequency component of the pulse accordingly. If we accept the impedance relationship at
the center frequency of the pulse as holding over the entire pulse bandwidth we may simplify Eq. (84) to

J(ω) ≈
(
e2ρτc
me

)
1 + iωoτc
1 + ω2

oτ
2
c

E(ω), (85)
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by replacing the general frequency variable ω with the constant ωo. We may simplify the model somewhat by
combining the nonlinear polarization and the plasma current into a single term (see Eqs. (16) and (18)) and
consider the relationship only at the center frequency of the pulse. We then require the integral of current
density

Ppls(ω) =
J(ω)
−iω

≈ − 1
iω

(
e2ρτc
me

)
1 + iωoτc
1 + ω2

oτ
2
c

E(ω). (86)

In this case we neglect the dispersive or frequency dependent nature of the relationship between the electric
field and the integral of the current and use only the complex impedance at the center frequency of the pulse.
Using the envelope representation we write the term we add to the nonlinear polarization as

P̂pls = − 1
iω

(
e2ρτc
me

)
1 + iωoτc
1 + ω2

oτ
2
c

Ê (87)

Now we move Eq. (87) into the slow-time domain via Eq. (43)

Ppls = − 1
iωoT

(
e2ρτc
me

)
1 + iωoτc
1 + ω2

oτ
2
c

E (88)

as was done for the propagation Eq. (49) in section 2.1.

Using the scale factor defined in Eq. (48) we write the operator expression as

T−1NplsE ≡ −
σ

2
(1 + iωoτc)T−1(ρE) (89)

where
σ ≡ ko

noρc

ωoτc
1 + ω2

oτ
2
c

, (90)

is the cross-section for inverse Bremsstrahlung (the process by which an electron absorbs energy from the
optical pulse during a collision). Note that the power of the shock operator in Eq. (89) differs from that in
Eq. (76).

MPI Energy Loss We need a term in our propagation equation to represent the reduction in optical
pulse energy required to ionize the medium (known as multiphoton absorption or MPA). We do this by
constructing an artificial current with the value necessary to dissipate the needed energy. This current is the
coupling between the propagation or field Eq. (49) and the ionization physics model in Eq. (66). In order
to obtain the expression for the coupling we seek the value of a current which will dissipate an amount of
power per unit volume equal to that required to support the ionization. Remember that work is defined as

W =
∫

F · dx =
∫

F · v dt, (91)

and thus
P =

dW

dt
= F · v. (92)

By definition the force on a charge in an electric field is the product of the charge and electric field values.
Hence, force per unit volume is the product of charge density and electric field value. Finally, the power per
unit volume S (via Eq. (92)) is

S = −eρv ·E = J ·E, (93)

where the last equality results from the fact that the product of a density and a velocity is a flux. This may
be seen by considering a thin slice (taken normal to the velocity vector) through the density, of thickness dx.
If this slice moves through its front face in time dt then it is traveling with velocity dx/dt = v. The product
of the density and velocity is ρdx/dt which in our case gives how many Coulombs of charge pass through the
front face of our slice each second. If we postulate a current of the right value flowing in our electric field
then we will naturally have the correct power dissipation. Let us assume that the ionization rate is directly
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proportional to the number of available neutral atoms ρnt and that we may neglect saturation effects. We
write

dρ

dt
= Wrρnt, (94)

where Wr is the photoionization rate. This gives the number of new free electrons we should expect per unit
volume per second. For each of these electrons K photons where absorbed, each having an energy of ~ω.
Hence the total energy needed per unit volume per second is given by

S = WrρntK~ωo = J ·E. (95)

This implies that the current density must be

J =
WrρntK~ωo
|E|2

E, (96)

where the normalization by the square of the electric field is simply to cancel the similar term in the numerator
of the dot product of current density and electric field. We have expressed everything up to now in terms of
the instantaneous fields. Using an approximation similar to that in Eq. (58) we note that

S ≈ 1
2
J · E (97)

and construct an expression similar to that in Eq. (96) for our developed envelope equation

J = 2
WrρntK~ωo
|E|2

E , (98)

where the factor of two compensates for the one-half in Eq. (97).

We need a model for the photoionization rate Wr. For a K-photon ionization process a commonly used
model is

Wr = σkIK , (99)

giving

J = 2
σkρntK~ωoIK

|E|2
E = 2

βKIK

|E|2
E (100)

where we have used Eq. (68).

Just as we did in section 2.2.3 we seek a term that can be added to the polarization (even though we
are modeling the loss with a current). Again, we need the integral of the current and so we use the same
technique as we did in obtaining Eqs. (75) and (88). Expressing the relationship between current and electric
field in the frequency domain, dividing by (−iω) to obtain the integral of current and transforming back into
the slow-time temporal envelope domain we have

PMPA(r, t, z) = T−12
βKIK

−iωo|E|2
E , (101)

for the equivalent material polarization representing MPA. Using Eqs. (58), (48) and (101) we write

T−1NMPAE ≡ −
βK
2
T−1IK−1E . (102)
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3 Summary of Physical Model

Here we summarize the physical model that we discretize and solve in order to investigate various aspects
of nonlinear optical propagation. It includes paraxial diffraction, group velocity and third-order dispersion,
linear and nonlinear shock, Kerr and Raman effects and ionization. There are many models for nonlinear
optical propagation in the literature [8, 9, 13, 20, 4, 18, 30, 5, 38]. Ours is similar to those in the aforemen-
tioned references. However, our method of including the impedance effects in the plasma defocusing term
leads to a difference in the shock terms from those in [13].

The propagation equation for the electric field envelope E is

∂ζE =
i

2k
T−1∇2

⊥E + iDE + TNE , (103)

with wavenumber k = 2π/λ and wavelength λ. The dispersion and shock operators are given by

D ≡ −k
′′

2
∂2
τ − i

k′′′

6
∂3
τ and T ≡

(
1 +

i

ωo
∂τ

)
(104)

respectively. The nonlinear operator may be decomposed as

N = Nkr + T−1Npls + T−1NMPA. (105)

Kerr and Raman effects are modeled with

Nkr = ikon2[(1− α)I + αQR]. (106)

We have used the approximately time-harmonic relationship

I ≈ cnoεo
2
|E|2 (107)

to specify the intensity envelope I. Delayed Raman response is described by

QR(r, t, z) =
∫ t

−∞
R(τ)I(r, t− τ, z)dτ, (108)

with

R(t) =
γ2 + ω2

R

ωR
exp(−γt) sin(ωRt), (109)

where ωR and γ are respectively characteristic frequency and attenuation constants for the molecular species
interacting with the pulse.

The following quantities

τc = Electron collision or relaxation time
me = Mass of an electron
ωo = Pulse center frequency
ko = Pulse center wavenumber
no = Background refractive index
K = Photons required to free single electron
Ui = Energy required to free single electron
ρnt = Neutral atom number density
αr = Electron-positive ion recombination loss
σk = Ionization cross-section.
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help us express the remaining ionization physics. For plasma defocusing we use

NplsE = − iko
2noρc

T−1(ρE), (110)

or if we desire to include collision effects

Npls ≡ −
σ

2
(1 + iωoτc)ρ, (111)

with
ρc ≡ εomeω

2
o/e

2, and σ ≡ ko
noρc

ωoτc
1 + ω2

oτ
2
c

. (112)

The energy loss in the pulse due to multiphoton absorption is included via

NMPA = −βK
2
IK−1, (113)

with
βK = σkρntK~ωo. (114)

The evolution of the electron density requires an auxiliary equation

dρ

dt
=

σ

n2
oUi

ρI + IKσk (ρnt − ρ)− αrρ2, (115)

or
dρ

dt
=

σ

n2
oUi

ρI +
βK
K~ωo

IK − αrρ2. (116)
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A Symbols

Symbol Units Description

εo = 8.854× 10−12 F ·m−1 Permittivity of free space
µo = 4π × 10−7 H ·m−1 Permeability of free space
e = 1.60217657×10−19 C Magnitude of the charge carried by an electron
c = 2.99792458× 108 m · s−1 Speed of light in vacuo
F , F−1 − Fourier and inverse Fourier transforms
E, E, E V ·m−1 Electric field (vector, scalar, envelope)
Ê, Ê V ·m−1 Electric field (frequency domain scalar and envelope)
H A ·m−1 Magnetic field (vector)
D C ·m−2 Electric flux density (vector)
B W ·m−2 Magnetic flux density (vector)
J, J A ·m−2 Current density (vector, envelope)
ρ C ·m−3 Electric charge density
P, Pl, Pnl C ·m−2 Vector material polarization (total, linear, nonlinear)
χ(1) − Linear electric susceptibility
χ(3) − Nonlinear electric susceptibility
εr − Relative permittivity
t s Time coordinate variable
ω rad · s−1 Angular frequency
Np C ·m−2 Total nonlinear material response
k(ω) m−1 Wavenumber as a function of angular frequency
N̂p C ·m−2 Fourier transform of total nonlinear material response
r m Coordinate vector (x, y, z)
k′ s ·m−1 First order coefficient in Taylor series expansion of k(ω)
k′′ s2 ·m−1 Second order coefficient in Taylor series expansion of k(ω)
k′′′ s3 ·m−1 Third order coefficient in Taylor series expansion of k(ω)
k(m) sm ·m−1 mth order coefficient in Taylor series expansion of k(ω)
ωo rad · s−1 Pulse center frequency
x,y m Transverse spatial coordinate variables
z m Longitudinal spatial coordinate variable
ζ m Retarded longitudinal spatial coordinate variable
τ s Retarded temporal coordinate variable
κ(ω) m−1 Sum of first two terms in Taylor series expansion of k(ω)
N̂p C ·m−2 Fourier transform of total nonlinear material response
Np C ·m−2 Envelope of total nonlinear material response
N̂p C ·m−2 Fourier transform of envelope of total nonlinear material response
Ω rad · s−1 Slow frequency variable (ω − ωo)
D(Ω) rad · s−1 Taylor series expansion of k(ω)− κ(ω) in slow frequency variable
T ,S − Shock operators
no − Background refractive index of material
ko m−1 Central wavenumber
Np m−1 Vector instantaneous nonlinear polarization response (Kerr effect)
P C ·m−2 Scalar instantaneous nonlinear polarization response (Kerr effect)
P C ·m−2 Scalar envelope nonlinear polarization response (Kerr effect)
I W ·m−2 Scalar envelope intensity
n2 m2 ·W−1 Nonlinear refractive index of material
Nk m−1 Envelope Kerr operator
Nkr m−1 Envelope Kerr-Raman operator
QR W ·m−2 Molecular Raman response
γ s−1 Molecular damping rate (Raman)
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Symbol Units Description

ωR rad · s−1 Molecular Raman frequency
R(t) − Molecular impulse response (Raman)
α − Raman scattering contribution to Kerr-Raman terms
ρ m−3 Electron number density
K − Number of electrons required to ionize atom
αr m3 · s−1 Ionization recombination loss coefficient
ρnt m−3 Number density of neutral atoms
σk WK ·m−2K · s−1 Ionization cross-section for K-photon MPI processes
Ui J Energy required to free an electron (ionization energy)
~ J · s Planck’s constant (reduced)
σ m2 Avalanche ionization rate coefficient
ρc m−3 Critical plasma number density (plasma is opaque for ρ > ρc)
βK J ·WK ·m−2K−3 · s−1 Ionization rate coefficient (MPI)
v m · s−1 Velocity
F N Force
Ppls C ·m−2 Plasma current equivalent polarization
Npls C ·m−2 Plasma current equivalent polarization operator
τc s Electron collision or relaxation time
p(t) kg ·m · s−2 Electron momentum
P̂pls C ·m−2 Fourier transform of plasma current equivalent polarization
W J Work
P J · s−1 Power
S J · s−1 ·m−3 Power per unit volume
S J · s−1 ·m−3 Envelope power per unit volume
Wr s−1 Power per unit volume
PMPA C ·m−2 MPA equivalent polarization
NMPA C ·m−2 MPA envelope operator
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[5] L. Bergé, S. Skupin, R. Nuter, J. Kasperian, and J-P Wolf. Ultrashort filaments of light in weakly
ionized, optically transparent media. Rep. Prog. Phys., 70:1633–1713, 2007.

[6] M. Born and E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and
Diffraction of Light. Cambridge University Press, 1999.

[7] Robert W. Boyd. Nonlinear Optics. Elsevier Science, 1992.

[8] T. Brabec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics. Reviews of Modern
Physics, 72(2):545 – 91, April 2000.

[9] Thomas Brabec and Ferenc Krausz. Nonlinear optical pulse propagation in the single-cycle regime.
Phys. Rev. Lett., 78(17):3283–3285, April 1997.

[10] R. N. Bracewell. The Fourier Transform and its Applications, volume 42. McGraw-Hill, 1986.

[11] G. Cerullo and S. De Silvestri. Ultrafast optical parametric amplifiers. Review of Scientific Instruments,
74(1):1–18, 2003.

[12] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Rámirez-Góngora, and M. Kolesik. Practitioners
guide to laser pulse propagation models and simulation. Eur. Phys. J. Special Topics, (199):5–76, 2011.

[13] A. Couairon and A. Mysyrowicz. Femtosecond filamentation in transparent media. Physics Reports,
441(2-4):47 – 189, 2007.

[14] A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, and A. Mysyrowicz. Infrared light filaments:
simulations and experiments. J. Opt. Soc. Am. B, 19:1117, 2002.

[15] Jean-Claude Diels and Wolfgang Rudolph. Ultrashort Laser Pulse Phenomena: fundamentals, tech-
niques, and applications on a femtosecond time scale. Optics and Photonics. Academic Press, San
Diego, first edition, 1996.

[16] Jerrold e. Marsden and Anthony J. Tromba. Vector Calculus. W.H. Freeman and Company, 1998.

[17] M.D. Feit and Jr. J.A. Fleck. Beam nonparaxiality, filament formation, and beam breakup in the
self-focusing of optical beams. J. Opt. Soc. Am. B, 5(3):633–640, March 1988.

[18] G. Fibich. Self-focusing in the damped nonlinear Schrödinger equation. SIAM J. Appl. Math., 61(5):1680
– 1705, 2001.

[19] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich. Generation of optical harmonics. Phys. Rev.
Lett., 7(4-15):118–119, August 1961.

[20] Alexander L. Gaeta. Nonlinear propagation and continuum generation in microstructured optical fibers.
Opt. Lett., 27(11):924–926, June 2002.

25



[21] H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan. Differential gain and bistability using a sodium-
filled fabry-perot interferometer. Phys. Rev. Lett., 36:1135–1138, May 1976. First demonstration and
explanation of optical bistability.

[22] David Halliday and Robert Resnick. Fundamental Physics. John Wiley & Sons, 2e edition, 1986.

[23] J. Hansryd, P.A. Andrekson, M. Westlund, Jie Li, and P. Hedekvist. Fiber-based optical parametric
amplifiers and their applications. Selected Topics in Quantum Electronics, IEEE Journal of, 8(3):506–
520, 2002.

[24] Akira Hasegawa and Frederick Tappert. Transmission of stationary nonlinear optical pulses in dispersive
dielectric fibers. i. anomalous dispersion. Applied Physics Letters, 23(3):142–144, 1973. Theoretical
prediction of soliton.

[25] Akira Hasegawa and Frederick Tappert. Transmission of stationary nonlinear optical pulses in disper-
sive dielectric fibers. ii. normal dispersion. Applied Physics Letters, 23(4):171–172, 1973. Theoretical
prediction of soliton.

[26] John David Jackson. Classical Electrodynamics. John Wiley & Sons, New York, 1999.

[27] Mahesh R. Junnarkar. Short pulse propagation in tight focusing conditions. Optics Comm., 195(1–
4):273–292, August 2001.

[28] A. Couairon L. Berge. A variational method for extended nonlinear schroedinger systems. Physica D,
pages 152–153, 2001.

[29] M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright. Optically turbulent femtosecond light guide
in air. Phys. Rev. Lett., 83:2938–2941, Oct 1999.

[30] M. Mlejnek, M. Kolesik, E.M. Wright, and J.V. Moloney. Recurrent femtosecond pulse collapse in air
due to plasma generation: numerical results. Mathematics and Computers in Simulation, 56(6):563 –
70, July 2001.

[31] M. Mlejnek, E. M. Wright, and J. V. Moloney. Dynamic spatial replenishment of femtosecond pulses
propagating in air. Opt. Lett., 23(5):382–384, March 1998.

[32] M. Mlejnek, E. M. Wright, and J. V. Moloney. Femtosecond pulse propagation in Argon: A pressure
dependence study. Phys. Rev. E, 58(4):4903–4910, Oct 1998.

[33] Linn F. Mollenauer. The non-linear Schrödinger equation and ordinary solitons. Unpublished presen-
tation (Lucent Technologies), 2002.

[34] Jens Schwarz, Patrick Rambo, Mark Kimmel, and Briggs Atherton. Measurement of nonlinear refractive
index and ionization rates in air using a wavefront sensor. Optics Express, 20(8):8791–8803, apr 2012.

[35] Richard L. Sutherland. The Handbook of Nonlinear Optics. Marcel Dekker, 2003.

[36] R. W. Terhune, P. D. Maker, and C. M. Savage. Optical harmonic generation in calcite. Phys. Rev.
Lett., 8:404–406, May 1962. First observation of third order harmonic generation.

[37] E.J. Woodbury and W.K. Ng. Ruby laser operation in the near IR. Proc. IRE, 50(11):2365–2383, nov
1962. First observation of optical Raman scattering.

[38] A.A. Zozulya, S.A. Diddams, A.G. Van Engen, and T.S. Clement. Propagation dynamics of intense
femtosecond pulses: multiple splittings coalescence and continuum generation. Physical Review Letters,
82(7):1430 – 3, February 1999.

[39] Alex A. Zozulya. Propagation dynamics of intense femtosecond pulses: multiple splittings, coalescence,
and continuum generation. Phys. Rev. Lett., 82(7), 1999.

[40] Alex A. Zozulya, Scott A. Diddams, and Tracy S. Clement. Investigations of nonlinear femtosecond
pulse propagation with the inclusion of Raman, shock, and third-order phase effects. Phys. Rev. A,
58(4):3303–3310, October 1998.

26



DISTRIBUTION:

1 MS 0359 D. Chavez, LDRD Office, 1911
1 MS 0899 Technical Library, 9536 (electronic copy)

27



28



v1.40

29



Unclassified Unlimited Release

Unclassified Unlimited Release


